
Exam Geometry 2022

All exercises have equal weight so please try them all. You may refer to theorems
and definitions of the lecture notes but are otherwise expected to prove any claims
you make. Good luck!

1. (a) Consider the point q = (1, 1, 1, 1) ∈ R4 and the U the linear subspace
of R4 spanned by a = (−1, 1, 1, 1) and b = (1,−1, 1, 1). Write down
explicit homogeneous coordinates (wrt the standard basis) for a point in
P3 \ P (q + U).
Solution: We claim that [−1 : 1 : 1 : 1] = a is not in P (p + U) = {s|0 ̸=
s ∈ q+U}. Assume to the contrary that for some t ∈ R we had ta ∈ q+U
then there would be x, y ∈ R such that ta = q + xa + yb and so q ∈ U .
However q /∈ U because U ⊂ ker ϵ1 + ϵ2.

(b) Imagine a finite dimensional vector space V and prove or give a counter
example to the following statement. The intersection of three distinct
projective lines in P (V ) contains at most one point.
Solution: The three projective lines are of the form P (A), P (B), P (C)
where A,B,C ⊂ V are two-dimensional linear subspaces of V . Since
P (A ∩ B) = P (A) ∩ P (B) we should consider the case where there are
two independent vectors in A ∩ B. The vectors must be independent
because otherwise they would represent the same point in P (V ). Since the
dimension of A and B is two this means A = B and so the projective lines
P (A) and P (B) must coincide. This shows that the intersection of two
projective lines cannot contain more than one point. Intersecting with an
additional projective line cannot increase the cardinality of the set so the
proof is finished.

(c) Consider the quadratic polynomial F (x, y, z) = x2−2y2−3z2 and the linear
map L : R3 → R3 determined by L(e1) = e2, L(e2) = e3 and L(e3) = e1.
Find a polynomial G such that the projective transformation P (L) sends
P (X(F )) to P (X(G)).
Solution: The polynomial is G = F ◦ L−1 so G(x, y, z) = F (y, z, x) =
y2 − 2z2 − 3x2. This is because X(G) = X(F ◦ L−1) = L(X(F )). The
last equality is because L is an invertible linear map so F (x, y, z) = 0
is equivalent to (F ◦ L−1)(L(x, y, z)) = 0. Finally P (L)(P (X(F ))) =
P (L(X(F ))) = P (X(G)) as required.

2. (a) Recall that the geodesic equations for a parametrized curve γ(t) = (γ1(t), γ2(t))
in the hyperbolic plane take the form γ̈1 = 2γ−1
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2). Define two parametrized curves β : (−1, 1) → H2 and γ : (−1, 1) →



H2 defined by γ(t) = (0, 1 + t) and β(t) = (1, 1). Which of these two
parametrized curves β and γ is a hyperbolic geodesic?
Solution: γ is not a hyperbolic geodesic because γ̇(t) = (0, 1) so the second
geodesic equation is not satisfied: we get γ̈ = 0 while the right hand side
is 1. β is a geodesic because β̇ = β̈ = 0 reduces both geodesic equations
to 0 = 0.

(b) α : (0, 1) → P is a curve defined by α(t) = (t, t
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(P, g) where P = (0, 1)× (0, 1) and the Riemannian metric g is defined by
g11(x, y) = 1, g22(x, y) = 2 and g12(x, y) = xy. Find the length of α with
respect to this metric.
Solution: α̇(t) = (1, t) and g(α(t))(α̇(t), α̇(t)) = g(t, t
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(c) If W : Rn → Rn is an injective linear map then show that W is a Rieman-
nian isometry from the Riemannian chart (Rn, gW ) to (Rn, gE) where gE
is the standard Euclidean metric and gW is the pull-back metric.
Solution: Since W is linear and injective it is a C2 bijection with a C2 in-
verse and also dW (p) = W for all p ∈ Rn. To check thatW is a Riemannian
isometry we need to check that gW (p)(a, b) = gE(W (p))(dW (p)a, dW (p)b).
By definition of the pull-back metric gW (p)(a, b) = ⟨W (a),W (b)⟩ =
gE(W (p))(W (a),W (b)) = gE(W (p))(dW (p)a, dW (p)b) using the definition
of the Euclidean metric gE and dW (p) = W .

3. (a) Suppose φ ∈ E(n) is a Euclidean isometry and T a k-simplex in Rn. Is it
true that φ(T ) is also a k-simplex? Prove or give a counter example.
Solution: We may assume that T = [v0, . . . vk] for some vectors v0, . . . vk ∈
Rn such that the vectors ui = vi − v0, where i = 1 . . . k are linearly in-
dependent. Since φ is a linear bijection we find that the vectors φ(ui),
i = 1 . . . k, are also independent because

∑k
i=1 aiφ(ui) = 0 is equivalent to∑k

i=1 aiui = 0. We conclude that φ(T ) = φ({
∑k

i=0wivi|w0 + · · · + wk =

1}) = {
∑k

i=0 wiφ(vi)|w0 + · · ·+ wk = 1} = [φ(v0), . . . , φ(vk)]

(b) Are the simplicial complexes K = {∅, [0]} and L = {∅, [0], [e7]} in R7

simple homotopy equivalent?
Solution: No because the Euler characteristic χ is preserved under simple
homotopy equivalence and χ(K) = 1 while χ(L) = 2.

(c) Is the antipodal map A : R4 → R4 defined by A(v) = −v an affine rota-
tion?
Solution: An affine rotation is a composition of two reflections whose mir-
rors intersect. The points on the mirror are fixed by the reflection so points



on the intersection of the two mirrors are fixed by the rotation. In R4 a
mirror for a reflection is a three-dimensional affine subspace. Two three-
dimensional affine subspaces cannot intersect in a single point because that
would mean their directions only intersect in the origin. It follows that if A
would be a rotation then there must be a non-zero vector x in the intersec-
tion of the corresponding mirrors and so A(x) = x. However A(x) = −x
so x = 0 gives our contradiction.


